

Timers are standard features of almost every microcontroller. So it is very important
to learn their use. Since an AVR microcontroller has very powerful and multifunctional

timers, the topic of timer is somewhat “vast”. Moreover there are many different
timers on chip. So this section on timers will be multipart. I will be giving basic

introduction first.

What is a timer ?

A timer in simplest term is a register. Timers generally have a resolution of 8 or 16

Bits. So a 8 bit timer is 8Bits wide so capable of holding value withing 0-255. But this
register has a magical property ! Its value increases/decreases automatically at a

predefined rate (supplied by user). This is the timer clock. And this operation does
not need CPU’s intervention.

Since Timer works independently of CPU it can be used to measure time accurately.

Timer upon certain conditions take some action automatically or inform CPU. One of

the basic condition is the situation when timer OVERFLOWS i.e. its counted upto its
maximum value (255 for 8 BIT timers) and rolled back to 0. In this situation timer

can issue an interrupt and you must write an Interrupt Service Routine (ISR) to
handle the event.

Timer Values

0 1 2 … 255 0 1 2 … 255

Using The 8 BIT Timer (TIMER0)

The ATmega16 and ATmega32 has three different timers of which the simplest is
TIMER0. Its resolution is 8 BIT i.e. it can count from 0 to 255.

Note:

Please read the “Internal Peripherals of AVRs” to have the basic knowledge
of techniques used for using the OnChip peripherals(Like timer !)

The Prescaler

Timer Clock Value Increases/Decreases

8 BIT Counter Register

Timers - Introduction

www.eXtremeElectronics.co.in

AVR Tutorial Series

Timer Initialized CPU Notified of Over Flow

The Prescaler is a mechanism for generating clock for timer by the CPU clock. As you

know that CPU has a clock source such as a external crystal of internal oscillator.
Normally these have the frequency like 1 MHz,8 MHz, 12 MHz or 16MHz(MAX). The

Prescaler is used to divide this clock frequency and produce a clock for TIMER. The
Prescaler can be used to get the following clock for timer.

• No Clock (Timer Stop).

• No Prescaling (Clock = FCPU)
• FCPU/8

• FCPU/64
• FCPU/256

• FCPU/1024

Timer can also be externally clocked but I am leaving it for now for simplicity.

TIMER0 Registers.

As you may be knowing from the article “Internal Peripherals of AVRs” every
peripheral is connected with CPU from a set of registers used to communicate with it.

The registers of TIMERs are given below.

TCCR0 – Timer Counter Control Register.

This will be used to configure the timer.

Bit 7 6 5 4 3 2 1 0
Name FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00
Initial Value 0 0 0 0 0 0 0 0

As you can see there are 8 Bits in this register each used for certain purpose. For this
tutorial I will only focus on the last three bits CS02 CS01 CS00 They are the CLOCK

SELECT bits. They are used to set up the Prescaler for timer.

CS02 CS01 CS00 Description
0 0 0 Timer stoped
0 0 1 FCPU
0 1 0 FCPU/8
0 1 1 FCPU/64
1 0 0 FCPU/256
1 0 1 FCPU/1024
1 1 0 External Clock Source on PIN

T0.Clock on falling edge
1 1 1 External Clock Source on PIN

T0.Clock on rising edge

TCNT0 – Timer Counter 0

Bit 7 6 5 4 3 2 1 0
Name TCNT0
Initial Value 0 0 0 0 0 0 0 0

This is the counter for timer.

Timer Interrup Mask Register TIMSK

This register is used to activate/deactivate interrupts related with timers. This register

controls the interrupts of all the three timers. The last two bits (BIT 1 and BIT 0)
Controls the interrupts of TIMER0. TIMER0 has two interrupts but in this article I will

tell you only about one(second one for next tutorial).

Bit 7 6 5 4 3 2 1 0
Name OCIE0 TOIE0
Initial Value 0 0 0 0 0 0 0 0

TOIE0 : This bit when set to “1” enables the OVERFLOW interrupt.

Now time for some practical codes !!!
We will set up timer to at a Prescaler of 1024 and our FCPU is 16MHz. We will

increment a variable “count” at every interrupt(OVERFLOW) if count reaches 61 we
will toggle PORTC0 which is connected to LED and reset “count = 0”.

Clock input of TIMER0 = 16MHz/1024 = 15625 Hz

Frequency of Overflow = 15625 /256 = 61.0352 Hz

if we increment a variable “count” every Overflow when “count reach 61” approx one

second has elapse.

Setting Up the TIMER0

 // Prescaler = FCPU/1024

 TCCR0|=(1<<CS02)|(CS01);

 //Enable Overflow Interrupt Enable
 TIMSK|=(1<<TOIE0);

 //Initialize Counter

 TCNT0=0;

Now the timer is set and firing Overflow interrupts at 61.0352 Hz

The ISR

ISR(TIMER0_OVF_vect)

{
 //This is the interrupt service routine for TIMER0 OVERFLOW Interrupt.

 //CPU automatically call this when TIMER0 overflows.

 //Increment our variable
 count++;

 if(count==61)
 {

 PORTC=~PORTC; //Invert the Value of PORTC

 count=0;
 }

}

Demo Program (AVR GCC)

Blink LED @ 0.5 Hz on PORTC[3,2,1,0]

#include <avr/io.h>
#include <avr/interrupt.h>

volatile uint8_t count;

void main()
{
 // Prescaler = FCPU/1024
 TCCR0|=(1<<CS02)|(CS01);

 //Enable Overflow Interrupt Enable
 TIMSK|=(1<<TOIE0);

 //Initialize Counter
 TCNT0=0;

 //Initialize our varriable
 count=0;

 //Port C[3,2,1,0] as out put
 DDRC|=0x0F;

 //Enable Global Interrupts
 sei();

 //Infinite loop
 while(1);
}

ISR(TIMER0_OVF_vect)
{
 //This is the interrupt service routine for TIMER0 OVERFLOW Interrupt.
 //CPU automatically call this when TIMER0 overflows.

 //Increment our variable
 count++;
 if(count==61)
 {
 PORTC=~PORTC; //Invert the Value of PORTC
 count=0;
 }
}

Hardware

ATmega16 or ATmega32 running @ 16MHz. Connet LEDs using 330ohms resistors on
PORTC[3,2,1,0]. If you are using xBoard you can connect four onboard LEDs to

PORTC using four PIN Connectors.

xBoard’s OnBoard LEDs

Whats next ?

Timer in compare mode.

Copy Right 2007-2008 Avinash Gupta
www.eXtremeElectronics.co.in

